Monatshefte für Chemie 109, 455-459 (1978)

Monatshefte für Chemie

© by Springer-Verlag 1978

Magnetische Messungen an *Heusler*-Phasen (Co, Ni)₂XY (X = Ti, Zr, Hf, V und Mn; Y = Ge und Sn)

Von

Rudolf Sobczak

Institut für physikalische Chemie, Universität Wien, Österreich

Mit 4 Abbildungen

(Eingegangen am 16. August 1977)

Magnetic Measurements on Heusler Alloys (Co, Ni)₂X Y (X = Ti, Zr, Hf, V and Mn; Y = Ge and Sn)

Magnetic measurements on *Heusler* alloys $(Co, Ni)_2 X Y$ are performed. The transitions from ferromagnetic to paramagnetic behaviour in some systems are of special interest.

Einleitung

Als Fortsetzung von Messungen an Heusler-Phasen $\operatorname{Co}_2 X Y^1$ wurden durch Substitution Co/Ni weitere Phasen dieses Typs hergestellt. Das Hauptaugenmerk richtete sich dabei auf die erwarteten Übergänge vom ferromagnetischen zum paramagnetischen Zustand bei einigen Systemen.

Probenherstellung und experimentelle Technik können einer früheren Arbeit entnommen werden¹.

Experimentelle Daten

Versuche, in Co_2MnSi und Co_2VSi einen Co/Ni-Austausch durchzuführen, wurden aufgegeben, weil bereits bei geringer Substitution mehrphasige Proben entstanden.

Dagegen war bei Co_2 TiGe ein Co/Ni-Austausch bis zu einer Zusammensetzung $Co_{1,3}Ni_{0,7}$ TiGe möglich. In dieser Mischphase fallen paramagnetische, ferromagnetische Momente und *Curie*temperaturen mit steigendem Ni-Austausch ab (Abb. 1).

Im System (Co, Ni)₂MnGe waren die Mischphasen bis zu $Co_{0,75}Ni_{1,25}MnGe$ bei den gewählten Herstellungsbedingungen einphasig. Ferromagnetische Momente und *Curie*temperaturen sinken ebenfalls mit steigendem Ni-Gehalt, die paramagnetischen Momente weisen dagegen bei $Co_{1,0}Ni_{1,0}MnGe$ ein Maximum auf.

Das System (Co, Ni)₂MnSn zeigt vollständige Mischbarkeit. Ferromagnetische Momente und *Curie*temperaturen fallen bei Co/Ni-Austausch stark ab. Die paramagnetischen Momente zeigen wieder ein Maximum (Co_{0,5}Ni_{1,5}MnSn) (Abb. 2).

Eine Mischphase $(Co, Ni)_2VSn$ existiert bis $Co_{1,5}Ni_{0,5}VSn$. Im erfaßten Meßbereich lag nur der *Curie*punkt von Co_2VSn . Die paramagnetischen Momente fallen wieder mit dem Ni-Einbau ab.

Co₂TiSn und Ni₂TiSn bilden eine vollständige Mischreihe. Hier fallen paramagnetische Momente und *Curie*temperaturen mit steigendem Co/Ni-Austausch stark, die ferromagnetischen Momente jedoch nur schwach ab. Eine Berechnung der paramagnetischen Momente ist nur bis Co_{1,0}Ni_{1,0}TiSn möglich, weil die Ni-reicheren Mischphasen temperaturunabhängig paramagnetisch sind.

Die Mischphasen (Co, Ni)₂ZrSn und (Co, Ni)₂HfSn sind schließlich bis Co_{1.0}Ni_{1.0}ZrSn bzw. Co_{1.8}Ni_{0.7}HfSn bei den gewählten Herstellungsbedingungen einphasig. In beiden Fällen fallen die paramagnetischen Momente und die *Curie*temperaturen stark ab, die ferromagnetischen Momente nur schwach ab (Abb. 3).

Diskussion

(Co, Ni)₂TiGe

Das berechnete paramagnetische Moment μ_{Co} zeigt sich wesentlich kleiner als das gemessene [Co₂TiGe: $\mu_{para}(gem.) = 1,32$ μ_B und $\mu_{para}(ber.) = 1,0$ μ_B ; Co_{1,5}Ni_{0,5}TiSn: $\mu_{para}(gem.) = 1,2$ μ_B , $\mu_{para}(ber.) = 0,66$ μ_B]. Diese Momente sind also nur unvollständig ausgerichtet.

Wegen der großen Abstände zwischen den Co-Atomen spielt eine direkte Wechselwirkung sicher kaum eine Rolle. Eine indirekte Wechselwirkung (Ww.) der Co-Atome über das Leitungsband kann angenommen werden. Der Ni-Einbau schwächt das Gesamtmoment und damit die s-d-Ww., was den starken Abfall der *Curie*temperatur erklärt.

(Co, Ni)₂MnGe und (Co, Ni)₂MnSn

Während in allen übrigen untersuchten Systemen der Verlauf sämtlicher Meßdaten einsinnig ist, zeigen die paramagnetischen Momente in diesen beiden Fällen bemerkenswerte Ausnahmen. Es liegt daher nahe, dieses Verhalten mit den Mn-Atomen in Zusammenhang zu bringen. Durch die Co/Ni-Substitution wird möglicherweise ein Teil der Elektronen, die auch vom Mangan in das Leitungsband abgegeben werden, durch die Ni-Atome geliefert. Die Elektronenkonfiguration der Mn-Atome ändert sich in Richtung auf ein größeres Moment. Auf der anderen Seite tragen aber auch die Co-Atome in Co₂MnGe und Co₂MnSn zum

³⁰ Monatshefte für Chemie, Vol. 109/2

R. Sobczak:

Gesamtmoment bei. Da die Ni-Atome sicher ein wesentlich kleineres (wenn überhaupt) lokalisiertes Moment beisteuern als Co, verkleinert dieser Vorgang das Gesamtmoment. Die Überlagerung beider Effekte kann dann zu einem Maximum in den paramagnetischen Momenten/ Formeleinheit führen. Für Co_{0,75}Ni_{1,25}MnGe berechnet sich ein ferromagnetisches Moment (2 S) von 2,46 μ_B (gem. 3,95 μ_B). Die große Abweichung erklärt sich wie früher¹ durch eine zusätzliche Polarisation von Leitungselektronen im ferromagnetischen Zustand. Im Fall von Ni₂MnSu sind die Verhältnisse umgekehrt. Das berechnete ferromagnetische Moment ist mit 3,6 μ_B sogar etwas größer als das gemessene

(3,2 μ_B). Auch die *Curie*temperaturen bei Mischphasen von Stanniden vergleichbarer Zusammensetzung sind wesentlich niedriger (Co_{0,75}Ni_{1,25}MnGe: 640 K, Co_{0,75}Ni_{1,25}MnSn: 490 K), und damit auch die Stärke der Ww. Bemerkenswert ist noch, daß am bzw. oberhalb des Maximums der paramagnetischen Momente in Richtung auf "Ni₂MnGe" bzw. Ni₂MnSn die paramagnetischen *Curie*temperaturen meist kleiner sind als die ferromagnetischen, was bei den übrigen Mischphasen nicht der Fall ist.

(Co, Ni)2TiSn

Vergleiche zwischen den aus den paramagnetischen und ferromagnetischen Momenten berechneten Spinwerten wurden im Fall von Co₂TiSn schon früher angestellt¹. Mit dem Co/Ni-Austausch ändern sich die Verhältnisse nur unwesentlich (ferromagnetische Momente konnten wegen der niedrigen *Curie*temperaturen nur bis Co_{1,65}Ni_{0,35}TiSn gemessen werden). Der steigende Ni-Einbau verkleinert das Gesamtmoment offenbar bereits im Fall Co_{1,0}Ni_{1,0}TiSn derartig, daß eine s-d-Ww. nicht mehr zustande kommt. Die paramagnetische Curietemperatur θ_p , die als grobes Maß für die Stärke der Ww. angesehen werden darf, hat nur den Wert von 10 K. Die übrigen Mischphasen zeigen nur mehr schwachen temperaturunabhängigen Paramagnetismus (Ni₂TiSn: $\gamma_q = 0.5 \cdot 10^{-6} \text{ emu}/g$; Lit.: $0.7 \cdot 10^{-6}$)³.

(Co, Ni)2ZrSn und (Co, Ni)2HfSn

Die annähernde Gleichheit der paramagnetischen und ferromagnetischen Spinwerte ändert sich mit zunehmenden Co/Ni-Austausch kaum. Die Deutung erfolgt daher wie früher. Wie die versuchte Extrapolation der *Curie*temperaturen zeigt, ist auch hier mit weiterem Ni-Einbau ein vollständiges Verschwinden der *Ww.* zu erwarten. Nireichere Mischphasen konnten allerdings bei den gewählten Herstellungsbedingungen nicht hergestellt werden. In der Literatur werden Ni₂ZrSn und Ni₂HfSn als temperaturunabhängig paramagnetisch beschrieben $(0,4 \cdot 10^{-6}$ bzw. $0,2 \cdot 10^{-6}$ emu/g bei 300 K)⁴.

Zusammenfassung

Es zeigt sich, daß in allen untersuchten Heusler-Phasen, außer bei (Co, Ni)₂MnGe und (Co, Ni)₂MnSn, wo der größte Beitrag zum Gesamtmoment von den Mn-Atomen kommt, durch den Co/Ni-Austausch das Gesamtmoment und damit die s-d-Ww. geschwächt und schließlich zum Verschwinden gebracht wird. Ni₂TiSn, Ni₂ZrSn und Ni₂HfSn sind daher im Gegensatz zu den entsprechenden Phasen mit Co temperaturunabhängig paramagnetisch. Trägt man *Curie*punkte entsprechender Phasen Co_{2-x}Ni_xX Y gegen Gitterparameter auf, so erhält man ähnliche Diagramme wie in einer früheren Arbeit¹. Dabei liegen allerdings die Minima außerhalb des erfaßten Meßbereichs (Abb. 4).

Herrn Prof. Dr. H. Nowotny danke ich herzlich für wertvolle Diskussionen.

Dem Fonds zur Förderung der wissenschaftlichen Forschung wird für die Bereitstellung der magnetischen Waage SUS 10 gedankt.

Literatur

- ¹ R. Sobczak, Mh. Chem. 107, 977 (1976).
- ² R. Sobczak und H. Bittner, Rév. Chim. Miner. 1969, 983.
- ³ Y. Fujita, J. Phys. Chem. Solids, 1973, 1443.
- ⁴ M. Terada, Y. Fujita und K. Endo, J. Phys. Soc. Japan 36, 620 (1974).

Korrespondenz und Sonderdrucke: Dr. R. Sobczak Institut für Physikalische Chemie Universität Wien Währinger Straße 42 A-1090 Wien Österreich